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1.0 INTRODUCTION 

 

Filter is usually used to refer to system that is designed to extract information about a 

prescribed quantity of interest from noisy data. In particular, estimate the value taken by some 

random variable given the observation of some other random variable. With this aim, for instance 

Kalman filter, finds applications in many diverse fields: industrial processes, communications 

(Digital communication and signal processing), radar, sonar, navigation, spacecraft, seismology, 

biomedical engineering, and financial engineering among others.  

 

The Kalman filter is implementable in the form of an algorithm for a digital computer, 

which was replacing analog circuitry for estimation and control at the time that Kalman filter was 

introduced. This implementation may be slower, but it is capable of much greater accuracy than 

had been achievable with analog filter. The Kalman filter does not require that the deterministic 

dynamic or the random process have stationary properties, and many application of importance 

include non-stationary stochastic processes. It is compatible with the state-space formulation of 

optimal controller for dynamic systems. It caters for the dual properties of estimation and control 

for systems. The Kalman filter provides the necessary information for mathematically sound, 

statistically-based decision methods for detecting and rejecting anomalous measurement.  

 

In this paper we discuss the basic methodology for solving state space system. In 

particular, we discuss the Kalman filter in the context of Bayesian technique.  

 

 

2.0 BAYESIAN TECHNIQUE FOR ESTIMATION AND CONTROL PROBLEM   

 

Formulation of solution for the estimation problem is outlined which forms the necessary 

fundamentals and procedure for approaching a state system problem of recursive nature. 

We need to obtain the state estimate x  of x on which the optimal measurements will be 

based. This estimate is based on the available observations D= (z1, z2, ……., zk ) and initial 

information of association between this observations and state of nature or signal to be estimated 

x  considering noise.  
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2.1.0  Single stage estimation problem 

Consider an estimation problem in a model in which the physical relationship is given by, 

                                 Z= g(x ,v)               (1) 

Where z is the measurement vector, x is the state vector (nx1), and v is the noise (error) vector 

(qx1). 

 

To estimate x  of x, we adopt the Bayesian approach. The parameter, which is attempted 

to estimate is viewed as a realization of the random variable x, as such, the data are described by 

the joint probability density function (PDF). 

           

  p(z, x)=p(z/x)p(x)    (2) 

 

Where p(x) is the prior PDF , summarizing the knowledge about x before any data are observed , 

and p(z/x) is a conditional PDF , summarizing the knowledge provided by data z conditioned on 

knowing x. 

 

In order to evaluate p(z, x) , we have to evaluate p(z/x) , and Bayesian approach provides a 

formalism which allows the a prior known information regarding the parameters of interest to be 

included in terms of their associated probability density functions. Thus it is useful to consider 

the Bayesian approach as fundamental way which leads to optimal estimation such as the 

maximization with respect to x of  p(x/z) where, 

            p(x/z)=p(z/x)p(x)/p(z)                 (3)                  that is,  ior
Evidence

Likelihood
Posterior Pr=  

 

The posteriori density function can also be calculated from,   

 p(x/z)=p (x,z)/p(z)   (4) 

Where  

p(x,z)=p(x,v=g*(x,z))J ,                      (5)               =
z

zxg
J

),(*
det   ,  

 if the dimensions of z and v are the same. However, it may be difficult to obtain in general, since 
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g* may not exist either because of the non-linear nature of g.  And p(z) is evidence density 

function. 

 

Three main criterion functions for estimation are used which depend on Bayesian approach. 

1)  Minimize mean square error (MMSE) 

According to (1), so that )(xMMSE = dxzpdxzxpxx )()/(?       (6) 

Now since p(z) 0 for all z, if the integral in brackets can be minimized for each z, then 

the Bayesian MSE will be minimized. 

+== dxzxpxdxzxxpdxzxpxx

x

dxzxpxx

x

)/(2)/(2)/()?()/()?(    (7) 

which when set equal to zero results in  

                               == )/()/( zxEdxzxxpx            (8) 

It is seen that the optimal estimator in terms of minimizing the Bayesian MSE is the mean 

of the posterior PDF p(x/z). 

     

    2)    Maximize a posterior estimator (MAP) 

           The MAP estimation approach chooses x  to maximize the posterior PDF 

                                       x =max p(x/z)       (9) 

          in finding the maximum of p(x/z)  we observe that  

                                         p(x/z)=p(z/x)p(x)/p(z) 

          So an equivalent maximization of  p(z/x)p(x). 

3) Minimize Maximum |x- x | 

             x =medium of p(x/z)    (10) 

 

             If we have minimum a prior information regarding the parameter x, then maximization of 

p(x/z) is equivalent to the maximization of p(z/x) , which is the Maximum Likelihood (ML) 

estimator in the case of Gaussian  Distribution. 
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2.1.1 Special case for Kalman filter (single stage) 

 

We consider the a special case for Kalman filter in which ),,,( 121=
k

zzzD K  is a set of 

measurements, therefore the physical relationship can be described as follows: 

           

                                vHxz +=  

 

in order to obtain the estimatied value of x , we compute  

    

                          
)(

)()(
)/(

zp

vpxp
zxp =    (11) 

 

given, p(x), p(v)  to be Gaussian distributions it follows that p(z) is also Gaussian. 

 

Gaussian distribution is a probability density function, which commonly used in stochastic 

system models and diverse fields. It is classified into Univariate and Multivariate Guassian 

probability distributions respectively. 

 

The Univariate Gaussian probability distiribution is denoted by N(mean, variance) with density 

function, 

 

 

=
2

_

)(

2

1
exp

2

1
)(

yy
yp               (12)     , where 

_

ymean =  and 2
var =iance  

 

The Multivariate Gaussian probability distribution is denoted by N(mean vector, symmetric 

positive-definite covariance matrix). The density function is, for instance n-dimensional with 
_

ymean =  ( n-vector)  and covariance= L (nxn symmetric positive –definite matrix) ,  

 

= )()(
2

1
exp

)2(

1
)(

_
1

_

yyLyy
L

yp
T

n
      (13) 

 

 

Hence given ,            ),0(),,( 0

_

RNvPxNx LL      

Where,  

      E(x)=
_

x , cov(x)=
0

P    and       E(v)=0,  cov(v)=R 

Also,      z=Hx+v   E(z)=HE(x)+E(v), E(z)=H
_

x , cov(z)=Hcov(x)H
T
+R=HP0H

T
+R 

 

),(.......... 0

_

RHHPxHNz
T
+  
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therefore we can calculate the p(x/z): 

                

( ) ( ) ( )++=
_

1

0

_
1

_
1

0

_

2

1
exp)/( xHzRHHPxHzHxzRHxzxxpxxzxp

T

T

T

T

 

 

2

1

2

1

0
2

1

2

1

0

)2( RP

RHHP

n

T
+

=  

 

= xxpxxzxp

T

1

2

1
exp)/(    (14) 

 

 

HRHpp
T 11

0

1
+= ,      

0

1

000 )( HPRHHPHPPP
TT
+=   (15) 

 

)(
_

1
_

xHzRPHxx
T

+=    (16) 

 

The difference )(
_

xHz  is called the measurement innovation or the residual. The residual 

reflects the discrepancy between the predicted measurement H
_

x  and the actual measurement z. A 

residual of zero means that the two are in complete agreement. 

 
1

RPH
T

 is chosen to be the gain or blending factor that minimizes the a posteriori error 

covariance. 

 

Since p(x/z) is Gaussian , the most probable, conditional mean and minimax estimate all coincide 

and is given by x . 

 

 

 

 

 

 

2.2.0   Multistage estimation problem 

 

Consider a system having a state 
k

x  at time step k, which is observed by some process 

generating an observation 
k

z . The state transition and observation equations can be written as 

follows: 
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),(

)( ,1

kkk

kkk

vxhz

wxfx

=

=
 

 

where 
k

w  and 
k

v are system and observation noise respectively. Given a set of observations 

{ }
k

zzzD K,,
21

= , we wish to determine )/( kk Dxp , the distribution over the state at the 

current time. Using Bayes rule we can write the following: 

 

                       )/()/(),/()/( 11= kkkkkkkkk DxpxzpDzxpDxp                   (17) 

 

Also, given the Markov structure of the problem, we have: 

 

                        )/()/()/,( 11111 = kkkkkkk DxpxxpDxxp                                   (18) 

 

From equations. (17) and (18) we can derive the following recursive state estimation equations: 

 

 

=

=

=

)/()/(

)20()/()/()/(

)19()/()/()/(

1

1

11111

kkkkk

kkkkkkk

kkkkkkk

Dxpxzpc

updatefilterDxpxzpcDxp

predictiondxDxpxxpDxp

                          

 

 

In general these equations are difficult to evaluate. For special cases of state transition and 

observation functions, and noise distributions however, these equations become exactly solvable. 

         

 

 

 

 

 

 

 

 

 

 

 

),( kk wxf  

k
w  

delay 

),( kk vxg  

k
v

k
z  

k
x

Figure 1 : Generic system diagram 
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2.2.1    Special case of  Kalman filter (Multistage) 

 

 

The Kalman  filter  essentially solves the prediction and filter update equations for the 

special case in which the system transition and observation functions are linear in the state and 

noise, and the noise is Gaussian. In this case since the noise is Gaussian, the integrals are 

analytically tractable, and the linearity of the transition and observation functions ensure that the 

state and observation distributions retain their Gaussian form at each step. We can write the state 

transition and observation equations as follows: 

                                         

                             
kkk

kkk

vHxz

wxx

+=

+=
1

 

 

Where we assume ),0(~ QNwk , ),0(~ RNv
k

.We define the following statistics for the prior 

and posterior distribution 

                         
ianceocpriorDxCovP

meanrprioDxEa

kkkk

kkkk

var)/(

]/[

11/

11/

=

=
 

 

                         
ianceocposteriorDxCovP

meanposteriorDxEa

kkk

kkk

var)/(

]/[

=

=
 

 

We can deduce from the linear equations of 
k

x  and 
k

z  that 

),(/ 11

T

kkk QxNxx  

),(/ RHxNxz
kkk

  

 

 

• Prediction 

 

Equation (19) allows us to create a prior distribution of the current state 
k

x  with only 

knowledge of   past observations 
1k

D . The reason this is a prior distribution is because we have 

yet to make an observation 
k

z   in this state. Once we make the observation, we will need to 

integrate it with this distribution to generate a posterior distribution. 

 



 9
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The term A inside the exponent can be expanded as follows: 
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This is a quadratic in 
1k

x , which can be written as 

                    1

1

11

1

1

1

1 )()()( ++= kk

T

kk

TT

k

T

k

T

k aPaxQxBCCxxA μμ  

 

Where =
1

B  and = Cμ . Substituting this result back into the exponent of  (21) we get 

[ ]} }

[ ]}+=

•+=

=

4444444 34444444 21
D

T
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T
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k

d

kk
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1
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This distribution has a quadratic inside an exponential term implying that )/( 1kk Dxp  has a 

Gaussian form. We can expand the quadratic term D as follows: 
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1
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1

1

1

1
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1
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1
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T
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kkk
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Consider terms in D that are quadratic in 
k

x  : 
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T

k

k
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k
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Since this is the only term in D that is quadratic in 
k

x , we can infer the covariance of the 

distribution as follows: 

                TT

kkk QPP +=
11/

              (22) 

 

Consider terms in D that are linear in 
k

x  
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Therefore, the prior distribution )/( 1kk Dxp  is Gaussian , with the mean and variance given by 

 

                                            
11/

=
kkk
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kkk QPP +=
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• Filter update 
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Now 
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From which we can deduce: 
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Where , 
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Now, 

                        

(23) 

(24) 
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Now, 

                                     

RK

RKRKHHPKI

HHPKIF

T

kk

T

kk

1

11

1/

1

1/

1

=

+=

=

 

Hence,  

               )( 1/

1

1/1/ +=
kkk

T

kkkkk
HazKHPaa                    (25) 

 

This allows us to characterize the posterior distribution )/( kk Dxp  as a Gaussian  with the 

following mean and variance: 

                   )( 1/
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1/1/ +=
kkk

T
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kk
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Where  

                      HPHRK
kk

T

1/
+=  

                        
1/

=
kkkk

Haze     (27) 

 

We identify that the mean of the posterior distribution is the regression function of k
a  and 

k
e .  According to the structure of sequential Bayesian estimation, a new posterior distribution 

occurs with each consecutive data. Kalman filter can be seen as the development of series of 

regression functions of k
a  on 

k
e , at times 1,2….k-1,k,  each having a potentially different 

intercept and regression coefficient. 
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3.0  CONCLUSION 

 

 Posterior probability density function of the state given all the measurement is derived, 

which can be termed a complete solution to the estimation problem because all available 

information are used, from the probability density function, an optimal estimation can be 

theoretically be found for any criterion. However, the problems involve specifically the 

computation of the a posterior conditional density function; the relationship between state of 

nature and measurement variables  must be linear or scalar,  the posterior conditional density 

function must be in analytical form(integrals should be tractable), furthermore, the density 

functions need to be from the same distribution (Gaussian distribution).   Under these conditions, 

an optimal solution exists using Kalman filter.  
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